0%

前缀树 & 贪心

前缀树,贪心算法相关题目。

介绍前缀树

  • 何为前缀树?如何生成前缀树:字符标在路径上(只能判断有没有以某字符串开头的字符串);扩充1:节点上标以字符结尾的字符串的数量(可以判断有没有加过某字符串);扩充2:节点增加一个数据项,到达过这个节点几次(给一个字符串,可以判断有多少字符串以它作为前缀)。可以根据功能扩充数据项。
  • 例子:一个字符串类型的数组arr1,另一个字符串类型的数组arr2。

arr2中有哪些字符串,是arr1中出现过的?请打印

arr2中有哪些字符串,是作为arr1中某个字符串前缀出现过的?请打印

arr2中有哪些字符串,是作为arr1中某个字符串前缀出现过的?请打印arr2中出现次数最大的前缀

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
public class Code_01_TrieTree {

public static class TrieNode {
public int path;
public int end;
public TrieNode[] nexts;

public TrieNode() {
path = 0;
end = 0;
nexts = new TrieNode[26];
}
}

public static class Trie {
private TrieNode root;

public Trie() {
root = new TrieNode();
}

public void insert(String word) {
if (word == null) {
return;
}
char[] chs = word.toCharArray();
TrieNode node = root;
int index = 0;
for (int i = 0; i < chs.length; i++) {
index = chs[i] - 'a';
if (node.nexts[index] == null) {
node.nexts[index] = new TrieNode();
}
node = node.nexts[index];
node.path++;
}
node.end++;
}

public int search(String word) {
if (word == null) {
return 0;
}
char[] chs = word.toCharArray();
TrieNode node = root;
int index = 0;
for (int i = 0; i < chs.length; i++) {
index = chs[i] - 'a';
if (node.nexts[index] == null) {
return 0;
}
node = node.nexts[index];
}
return node.end;
}

public void delete(String word){
if(search(word)!=0){
char[] chs = word.toCharArray();
TrieNode node = root;
int index = 0;
for (int i = 0; i < chs.length; i++) {
index =chs[i]-'a';
if(--node.nexts[index].path==0){
node.nexts[index]=null;
return;
}
node=node.nexts[index];
}
node.end--;
}
}

public int prefixNumber(String pre){
if(pre ==null){
return 0;
}
char[] chs = pre.toCharArray();
TrieNode node = root;
int index = 0;
for (int i = 0; i < chs.length; i++) {
index = chs[i]-'a';
if(node.nexts[index]==null){
return 0;
}
node=node.nexts[index];
}
return node.path;
}
}
}

哈夫曼编码贪心

  • 所有非叶节点求和为cost
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import java.util.Comparator;
import java.util.PriorityQueue;

public class Code_02_Less_Money {
public static int lessMoney(int[] arr) {
PriorityQueue<Integer> pQ = new PriorityQueue<>();
for (int i = 0; i < arr.length; i++) {
pQ.add(arr[i]);
}
int sum = 0;
int cur = 0;
while (pQ.size() > 1) {
cur = pQ.poll() + pQ.poll();
sum += cur;
pQ.add(cur);
}
return sum;
}

public static class MinheapComparator implements Comparator<Integer> {
@Override
public int compare(Integer o1, Integer o2) {
return o1 - o2; //升序
}
}

public static class MaxheapComparator implements Comparator<Integer> {
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;//降序
}
}

public static void main(String[] args) {
// solution
int[] arr = {6, 7, 8, 9};
System.out.println(lessMoney(arr));

int[] arrForHeap = {3, 5, 2, 7, 0, 1, 6, 4};

//min heap
PriorityQueue<Integer> minQ1 = new PriorityQueue<>();
for (int i = 0; i < arrForHeap.length; i++) {
minQ1.add(arrForHeap[i]);
}
while (!minQ1.isEmpty()) {
System.out.print(minQ1.poll() + " ");
}
System.out.println();

//min heap use Comparator
PriorityQueue<Integer> minQ2 = new PriorityQueue<>(new MinheapComparator());
for (int i = 0; i < arrForHeap.length; i++) {
minQ2.add(arrForHeap[i]);
}
while (!minQ2.isEmpty()) {
System.out.print(minQ2.poll() + " ");
}
System.out.println();

//max heap use Comparator
PriorityQueue<Integer> maxQ = new PriorityQueue<>(new MaxheapComparator());
for (int i = 0; i < arrForHeap.length; i++) {
maxQ.add(arrForHeap[i]);
}
while (!maxQ.isEmpty()) {
System.out.print(maxQ.poll() + " ");
}
}
}

串行做项目,收益最大

image-20210307170119028

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import java.util.Comparator;
import java.util.PriorityQueue;

public class Code_03_IPO {
public static class Node {
public int p;
public int c;

public Node(int p, int c) {
this.p = p;
this.c = c;
}
}

public static class MinCostComparator implements Comparator<Node> {
@Override
public int compare(Node o1, Node o2) {
return o1.c - o2.c;
}
}

public static class MaxProfitComparator implements Comparator<Node> {
@Override
public int compare(Node o1, Node o2) {
return o2.p - o1.p;
}
}

public static int findMaximizedCapital(int k, int W, int[] Profits, int[] Capital) {
Node[] nodes = new Node[Profits.length];
for (int i = 0; i < Profits.length; i++) {
nodes[i] = new Node(Profits[i], Capital[i]);
}

PriorityQueue<Node> minCostQ = new PriorityQueue(new MinCostComparator());
PriorityQueue<Node> maxProfitQ = new PriorityQueue<>(new MaxProfitComparator());
for (int i = 0; i < nodes.length; i++) {
minCostQ.add(nodes[i]);
}
for (int i = 0; i < k; i++) {
while (!minCostQ.isEmpty() && minCostQ.peek().c <= W) {
maxProfitQ.add(minCostQ.poll());
}
if (maxProfitQ.isEmpty()) {
return W;
}
W += maxProfitQ.poll().p;
}
return W;
}
}

一个数据流中,随时可以取得中位数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import java.util.Arrays;
import java.util.Comparator;
import java.util.PriorityQueue;

public class Code_04_MadianQuick {
public static class MedianHolder {
private PriorityQueue<Integer> maxHeap = new PriorityQueue<>(new MaxHeapComparator());
private PriorityQueue<Integer> minHeap = new PriorityQueue<>(new MinHeapComparator());

private void modifyTwoHeapsSize() {
if (this.maxHeap.size() == this.minHeap.size() + 2) {
this.minHeap.add(this.maxHeap.poll());
}
if (this.minHeap.size() == this.maxHeap.size() + 2) {
this.maxHeap.add(this.minHeap.poll());
}
}

public void addNumber(int num) {
if (this.maxHeap.isEmpty()) {
this.maxHeap.add(num);
return;
}
if (this.maxHeap.peek() >= num) {
this.maxHeap.add(num);
} else {
if (this.minHeap.isEmpty()) {
this.minHeap.add(num);
return;
}
if (this.minHeap.peek() > num) {
this.maxHeap.add(num);
} else {
this.minHeap.add(num);
}
}
modifyTwoHeapsSize();
}

public Integer getMedian() {
int maxHeapSize = this.maxHeap.size();
int minHeapSize = this.minHeap.size();
if (maxHeapSize + minHeapSize == 0) {
return null;
}
Integer maxHeapHead = this.maxHeap.peek();
Integer minHeapHead = this.minHeap.peek();
if (((maxHeapSize + minHeapSize) & 1) == 0) {
return (maxHeapHead + minHeapHead) / 2;
}
return maxHeapSize > minHeapSize ? maxHeapHead : minHeapHead;
}
}

public static class MaxHeapComparator implements Comparator<Integer> {
@Override
public int compare(Integer o1, Integer o2) {
if (o2 > o1) {
return 1;
} else {
return -1;
}
}
}

public static class MinHeapComparator implements Comparator<Integer> {
@Override
public int compare(Integer o1, Integer o2) {
if (o2 < o1) {
return 1;
} else {
return -1;
}
}
}

// for test
public static int[] getRandomArray(int maxLen, int maxValue) {
int[] res = new int[(int) (Math.random() * maxLen) + 1];
for (int i = 0; i != res.length; i++) {
res[i] = (int) (Math.random() * maxValue);
}
return res;
}

// for test, this method is ineffective but absolutely right
public static int getMedianOfArray(int[] arr) {
int[] newArr = Arrays.copyOf(arr, arr.length);
Arrays.sort(newArr);
int mid = (newArr.length - 1) / 2;
if ((newArr.length & 1) == 0) {
return (newArr[mid] + newArr[mid + 1]) / 2;
} else {
return newArr[mid];
}
}

public static void printArray(int[] arr) {
for (int i = 0; i != arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}

public static void main(String[] args) {
boolean err = false;
int testTimes = 200000;
for (int i = 0; i != testTimes; i++) {
int len = 30;
int maxValue = 1000;
int[] arr = getRandomArray(len, maxValue);
MedianHolder medianHold = new MedianHolder();
for (int j = 0; j != arr.length; j++) {
medianHold.addNumber(arr[j]);
}
if (medianHold.getMedian() != getMedianOfArray(arr)) {
err = true;
printArray(arr);
break;
}
}
System.out.println(err ? "Oops..what a fuck!" : "today is a beautiful day^_^");

}
}

最低字典序

给定一个字符串类型的数组strs,找到一种拼接方式,使得把所有字符串拼起来之后形成的字符串具有最低的字典序。

  • 贪心策略:str1str2拼接字典序<=str2str2拼接字典序,str1就放在str2前面
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import java.util.Arrays;
import java.util.Comparator;
public class Code_05_LowestLexicography {
public static class MyComparator implements Comparator<String> {
@Override
public int compare(String a, String b) {
return (a + b).compareTo(b + a);
// return 1 交换位置
}
}

public static String lowestString(String[] strs) {
if (strs == null || strs.length == 0) {
return "";
}
Arrays.sort(strs, new MyComparator());
String res = "";
for (int i = 0; i < strs.length; i++) {
res += strs[i];
}
return res;
}
}

贪心 :最多宣传场次

  • 一些项目要占用一个会议室宣讲,会议室不能同时容纳两个项目的宣讲。 给你每一个项目开始的时间和结束的时间(给你一个数组,里面 是一个个具体的项目),你来安排宣讲的日程,要求会议室进行的宣讲的场次最多。返回这个最多的宣讲场次。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import java.util.Arrays;
import java.util.Comparator;

public class Code_06_BestArrange {
public static class Program {
public int start;
public int end;

public Program(int start, int end) {
this.start = start;
this.end = end;
}
}

public static class ProgramComparator implements Comparator<Program> {
@Override
public int compare(Program o1, Program o2) {
return o1.end - o2.end;
}
}

public static int bestArrange(Program[] programs, int cur) {
Arrays.sort(programs, new ProgramComparator());
int result = 0;
for (int i = 0; i < programs.length; i++) {
if (cur <= programs[i].start) {
result++;
cur = programs[i].end;
}
}
return result;
}
}